was successfully added to your cart.

Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit

By May 2, 2018Mitochondria

Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit

Muqing Yi, David Weaver, and György Hajnóczky

itochondria are dynamic organelles in cells. The control of mitochondrial motility by signaling mechanisms and the significance of rapid changes in motility remains elusive. In cardiac myoblasts, mitochondria were observed close to the microtubular array and displayed both short- and long-range movements along microtubules. By clamping cytoplasmic [Ca 2+ ] ([Ca 2+ ] c ) at various levels, mitochondrial motility was found to be regulated by Ca 2+ in the physiological range. Maximal movement was obtained at resting [Ca 2+] c with complete arrest at 1–2+ M. Movement was M fully recovered by returning to resting [Ca 2+]c , and inhibition could be repeated with no apparent desensitization. The inositol 1,4,5-trisphosphate– or ryanodine receptormediated [Ca 2+]c signal also induced a decrease in mitochondrial motility. This decrease followed the spatial and temporal pattern of the [Ca 2+ ] c signal. Diminished mitochondrial motility in the region of the [Ca 2+ ]c rise promotes recruitment of mitochondria to enhance local Ca 2+ buffering and energy supply. This mechanism may provide a novel homeostatic circuit in calcium signaling.

Read the full articleRead the full article